Capturing a mammalian DNA polymerase extending from an oxidized nucleotide

نویسندگان

  • Amy M. Whitaker
  • Mallory R. Smith
  • Matthew A. Schaich
  • Bret D. Freudenthal
چکیده

The oxidized nucleotide, 8-oxo-7,8-dihydro-2΄-deoxyguanosine (8-oxoG), is one of the most abundant DNA lesions. 8-oxoG plays a major role in tumorigenesis and human disease. Biological consequences of 8-oxoG are mediated in part by its insertion into the genome, making it essential to understand how DNA polymerases handle 8-oxoG. Insertion of 8-oxoG is mutagenic when opposite adenine but not when opposite cytosine. However, either result leads to DNA damage at the primer terminus (3΄-end) during the succeeding insertion event. Extension from DNA damage at primer termini remains poorly understood. Using kinetics and time-lapse crystallography, we evaluated how a model DNA polymerase, human polymerase β, accommodates 8-oxoG at the primer terminus opposite cytosine and adenine. Notably, extension from the mutagenic base pair is favored over the non-mutagenic base pair. When 8-oxoG is at the primer terminus opposite cytosine, DNA centric changes lead to a clash between O8 of 8-oxoG and the phosphate backbone. Changes in the extension reaction resulting from the altered active site provide evidence for a stabilizing interaction between Arg254 and Asp256 that serves an important role during DNA synthesis reactions. These results provide novel insights into the impact of damage at the primer terminus on genomic stability and DNA synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

PCR Based Random Mutagenesis Approach for a Defined DNA Sequence Using the Mutagenic Potential of Oxidized Nucleotide Products

Oxidizing conditions have not been explored well for the in vitro random mutagenesis in directed evolution. The mutagenic potential of diverse range of oxidized products is well reported in literature. Incorporation of errors during PCR in the presence of oxidized nucleotides can be a very effective alternative to error prone PCR as the transversion mutation frequency is higher in the former ca...

متن کامل

Insertion of oxidized nucleotide triggers rapid DNA polymerase opening.

A novel mechanism is unveiled to explain why a pro-mutagenic nucleotide lesion (oxidized guanine, 8-oxoG) causes the mammalian DNA repair polymerase-β (pol-β) to rapidly transition to an inactive open conformation. The mechanism involves unexpected features revealed recently in time-lapse crystallography. Specifically, a delicate water network associated with a lesion-stabilizing auxilliary pro...

متن کامل

Intrasubunit nucleotide binding in ribonucleic acid polymerase.

1. Periodate oxidation of the ribose ring was used to synthesize derivatives of nucleoside triphosphates. 2. These oxidized nucleoside triphosphates. 2. These oxidized nucleoside triphosphates are competitive inhibitors of RNA polymerase. 3. On incubation, together with NaBH4, these oxidized labelled nucleotides are covalently bound to Escherichia coli RNA polymerase. 4. Nucleoside triphosphate...

متن کامل

A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution.

The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and characterization of a supramolecular nanopore d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017